U.S. EPA Short-lived Climate Forcer Emissions and Methods

U.S. Environmental Protection Agency Office of Air and Radiation 11 October 2021

Follow up questions: Rob Pinder (pinder.robert@epa.gov)

Overview

- Quick overview of EPA SLCF emission inventory approach
- Thoughts on uncertainty
- Differences with GHG methods
- Applicability to other countries
- Known gaps and questions

Short-lived climate forcer emissions data

- National Emission Inventory
 - Criteria pollutants: NO_x, SO₂, CO, PM_{2.5}, PM₁₀, Pb
 - Precursors: NH₃, Volatile organic compounds (VOC)
 - Many hazardous air pollutants
 - Annual, county level emissions, developed over a 3-year cycle
- Modeling inventories
 - Temporal allocation: monthly, day of week, hourly
 - Spatial surrogates: population density, highways
 - Profiles for chemical speciation of VOCs and PM (including organic carbon / elemental carbon)
 - Future year projections
- Emissions from vegetation and geological processes are calculated within the chemical transport modeling system: sea spray aerosol, lightning NO, biogenic VOC, etc.

What are the data used for?

- Input for use in regulatory and research air quality models
- Assess health and environmental risks of ozone, PM_{2.5}, and air toxics
- Quantify risks and benefits of U.S. air quality regulatory options
- Prioritize air quality management based on sources and trends
- Global assessments of long-range transport of air pollutants and short-lived climate forcers
- Requires detailed representation of
 - sectors and control technologies
 - chemical speciation
 - location and timing of emissions

What are the data sources?

- Data provided by State, Local, and Tribal air agencies
 - Supplemented by data developed by the US EPA
 - Quality assurance programs
- Emission estimation methods described in <u>technical support and</u> <u>guidance documents</u>

Point sources Power plants, industrial facilities

Facility-level data Largest sources require continuous emission monitors Some large sources require stack tests Non-point sources Residential heating, agriculture, oil and gas production

County totals

Sector-specific databases of emission factors and functions Mobile sources Vehicles, trains, planes, ships

Location-specific activity data Emissions from fuel combustion as well as evaporation and tirewear **Event sources** Prescribed & wildfires

Day and locationspecific activity data

Combines data from satellite-based detections and reports on acreage burned

Chemical speciation of PM and VOC

- Used to disaggregate total VOC and PM emissions compiled in the NEI into their component species for air quality models
- <u>SPECIATE</u> database of profiles on a percent mass basis
- What are the data sources?
 - Peer-reviewed literature
 - Emission source tests by government or industry
 - New data rigorously reviewed with quality scoring criteria
 - <u>Bray et al. (2019)</u> reviewed profiles and recommended priority updates
- Pros and Cons of this approach
 - Can fill in the gaps for sources where no speciated emission tests are available
 - Profiles require review when emission estimates are updated to ensure that the profiles are representative of the sources they are assigned to
 - Potential issue: profile and emission factor may be measured under different conditions

How are the data organized?

- Source Classification Code (SCC)
 - Four-tiers starting with broad sectors, down to resolving specific equipment and control technologies
 - More than 9,000
 - WebFIRE emission factor database lists existing emission factors, including AP-42 emission factors, for some SCC codes
 - Cross-reference tables map SPECIATE profiles to SCC codes

- Example for Residential Wood Heating Appliances
 - 19 different SCCs
 - Tier 1: Fuel Combustion Other
 - Tier 2: Residential Wood
 - Tier 3: Woodstoves
 - Tier 4: Woodstove: Non-catalytic Woodstoves: Pellet Fired [2104008053]

U.S. National Emissions (Gg per year)

Note that wildfire emissions are not included in these totals

Source: U.S. Emission Report to the Convention on Long-range Transboundary Air Pollution (2021)

US 2019 EMISSIONS BY SECTOR AND POLLUTANT

Industrial and other fuel combustion

Metals processing

Highway vehicles

Other industrial processes

■ Storage and transport of fuels

Electric utilities

- Chemical and manufacturing
- Petroleum and related industries
- Solvent Use
- Waste

Source: U.S. Emission Report to the Convention on Long-range Transboundary Air Pollution (2021)

U.S. Black carbon emissions (Gg per year)

Source: U.S. National Report to Arctic Council's Expert Group on Black Carbon and Methane (2021)

Uncertainty

- Challenges
 - Many large datasets
 - Difficult to independently assess with observations
 - Quantifying uncertainty requires resources
- Types of uncertainty
 - Unknown emissions
 - Unresolved variability
 - Incomplete activity data
 - Errors (can be reduced through quality assurance techniques)
- Recent assessment by <u>Day et al. (2019)</u>
 - Trend: models or direct measurements are replacing emission factors
 - Opportunities to compare across inventories for outliers
 - Continuous assessment and frequent updates are essential

Uncertainty example: Stationary sources

Reliability of emission estimate

- Emissions from stationary industrial facilities can vary depending on operating procedures, equipment type, and emission control technologies
- Default emission factors may not match specific practices at a facility
- Material balance may only be accurate in processes where nearly all the material is converted to emissions
- Recommend large sources are directly measured, and continuously measured if there is considerable temporal variability

Differences with GHG emission methods

- The time and place of emissions is important, not just annual total
 - This requires more activity data
 - May require time- and spatially-varying emission factors
- For some sectors where GHG methods use fuel-based emission factors, some SLCF emission factors use a different basis
 - Ship emissions are tracked using distance travelled between satellite-based automatic identification system checks
 - NEI includes aircraft take-offs and landings, but not cruise emissions
- Sector aggregations can differ, for example industrial combustion and process emissions

Applicability to other countries

- Methods and guidance can be applicable in other contexts
 - Emission System Structure
 - Data management and quality assurance
- Many globally important emission sources are highly variable and U.S. emission test conditions may not be applicable
 - Open burning: types of materials and burning conditions
 - Residential cooking: large range of conditions
 - Rare in U.S.: for example, brick kilns, three-wheeled motor vehicles
- Very challenging to develop representative Tier I methods using fuelbased emission factors for many sources, given diversity of emissions processes

Gaps and questions

- EPA methods are a hybrid of state-provided emissions data and emissions developed using nationally consistent methods – what is the right mix for the international community?
- Do existing IPCC emission categories have enough specificity to facilitate evaluation of reported inventories?
- To what extent do emission factors resolve the differences between particulate matter, condensable PM, intermediate volatility compounds, and volatile organic matter?